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The Event: June 2013 Flooding in Northern India. Parts 
of mountainous northern India—including Himachal 
Pradesh, Uttarakhand, and Uttar Pradesh—experi-
enced extremely heavy precipitation during 14–17 
June 2013 (Fig. 17.1a,b). Landslides, debris f lows, 
and extensive flooding caused catastrophic damage 
to housing and infrastructure, impacted >100000 
people, and resulted in >5800 deaths (Dobhal et al. 
2013; Dube et al. 2013; Dubey et al. 2013; Joseph et 
al. 2014; Mishra and Srinivasan 2013). Subsequent 

heavy rains on 24–25 June hampered rescue efforts, 
ultimately leaving thousands without food or shelter 
for >10 days (Prakash 2013).

Causes of the mid-June precipitation and associ-
ated flooding have been analyzed in detail (Dobhal 
et al. 2013; Dube et al. 2014; Mishra and Srinivasan 
2013; Prakash 2013). Anomalously early arrival of 
monsoon-like atmospheric circulation over India 
(Fig. 17.1c, Supplementary Figure S17.1a) brought 
heavy rains to the mountainous regions where snow 

Cumulative precipitation in northern India in June 2013 was a century-scale event, and evidence for increased 
probability in the present climate compared to the preindustrial climate is equivocal.

Fig. 17.1. Precipitation characteristics and synoptic environment. (a) June 2013 grid cell cumulative precipitation 
percentiles relative to June climatology (1951–2012). White box highlights the severe flooding domain (29°–33°N, 
77.5°–80°E). (b) Daily cumulative precipitation distribution over the flood domain. (c) 14–17 June 2013 com-
posite lower-level wind and specific humidity anomalies relative to 14–17 June climatology. (d) Climatological 
and 2013 meridional temperature gradient (MTG), defined as the zonally averaged (52°–85°E) pentad mean 
tropospheric (200–500 mb) temperature difference between 30°N and 5°N. (e,f) 14–17 June 2013 composite 
upper- and lower-level wind and geopotential height anomalies relative to the 14–17 June climatology. (g,h) 
Upper- and lower-atmosphere self-organizing map (SOM) patterns that correspond to 14–17 June 2013. Pat-
tern matches are autonomously selected from 35 SOM nodes, generated from an analysis of all 1951–2013 June 
days (see Supplemental Materials). (i,j) Composite precipitation for all June days during the 1951–2013 period 
that were associated with the upper- and lower-level SOM patterns shown in (g) and (h).
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cover typically melts prior to monsoon onset (Dube et 
al. 2014; Joseph et al. 2014). Snow cover in local river 
basins was ~30% above normal in early June 2013 
(Durga Rao et al. 2014). Heavy precipitation led to 
rapid snowmelt, overwhelming the regional hydro-
logic system, causing glacial lake outburst floods, and 
triggering catastrophic mass wastage events (Ander-
mann et al. 2012; Dubey et al. 2013; Durga Rao et al. 
2014; Prakash 2013; Siderius et al. 2013).

The upper- and lower-level synoptic conditions 
in early and mid-June supported the anomalously 
early monsoon-like circulation (Supplementary Fig. 
S17.1a) and excessive precipitation in northern India 
(Fig. 17.1a,b). In the upper atmosphere (200 mb), a 
persistent anticyclonic anomaly formed over Central 
Asia (Fig. 17.1e). This upper-level blocking pattern 
guided mid-to-high-latitude troughs southward, 
thereby facilitating the advection of relatively cold, 
dry, high-potential-vorticity air to the upper levels 
of the atmosphere over northern India (Joseph et al. 
2014). In the lower atmosphere (850 mb), low-pressure 
systems formed over both the northern Bay of Bengal 
and the northern Arabian Sea (Joseph et al. 2014), 
with the Bay of Bengal system moving inland over 
central India and persisting for the duration of the 
event (Fig. 17.1f). Low-level convergence associated 
with these systems and a stronger-than-normal Soma-
li Jet facilitated anomalous moisture advection to the 
Indian subcontinent (Fig. 17.1c). These co-occurring 
upper- and lower-level dynamics are consistent with 
a convectively unstable atmosphere (Hong et al. 2011; 
Ullah and Shouting 2013; Wang et al. 2011), which, 
when combined with orographic forcing from the 
surrounding northwestern Himalayan terrain, create 
an environment ripe for intense mesoscale convection 
(Houze et al. 2011).

In this study, we analyze the dynamics of this 
event within the context of the historical and prein-
dustrial climates.

Historical context . We contextualize June 2013 
precipitation using the Indian Meteorological De-
partment (IMD) 1951–2013 1° × 1° gridded dataset 
(Rajeevan et al. 2010), with the caveat that the rain 
gauge network in the region could have changed over 
this period. Cumulative June precipitation exceeded 
the 80th percentile over much of central and north-
ern India, and it exceeded the maximum quantile 
over a majority of the flood region (Fig. 17.1a). From 
14 to 17 June, this domain (29°–33°N, 77.5°–80°E) 
received four-day total precipitation that was un-
precedented in the observed record (Fig. 17.1b), with 

the heaviest day (16 June) exceeding the previous 
one-day June maximum by 105% (Supplementary 
Fig. S17.2). Consequently, the flood region recorded 
the highest total accumulated June precipitation in 
the 1951–2013 record, with the previous maximum 
June total equaled by 17 June and exceeded by 31% 
by the end of the month (Fig. 17.1b). 

Monsoon dynamics and thermodynamics were 
also unusual relative to June climatological norms. 
The monsoon onset date is closely associated with the 
reversal of the zonally averaged (52°–85°E) meridi-
onal tropospheric (500–200 mb) ocean-to-continent 
(5°–30°N) temperature gradient (Ashfaq et al. 2009; 
Webster et al. 1998), and with the vertical easterly 
zonal wind shear between 850 mb and 200 mb aver-
aged over 0°–30°N and 50°–90°E (Li and Yanai 1996; 
Webster et al. 1998; G. Wu et al. 2012; Xavier et al. 
2007). The 2013 meridional temperature gradient 
(MTG) reversal dates were among the earliest on 
record (1951–2013, Fig. 17.1d) and the vertical easterly 
wind shear was stronger than normal during early-
June (Supplementary Fig. S17.1b). The early MTG 
reversal resulted from anomalously high land tem-
peratures (~2 standard deviations; Supplementary 
Fig. S17.1c,d), which co-occurred with record-low 
Eurasian snow cover (NOAA 2013). In addition, as 
a result of the early monsoon-like circulation, low-
level atmospheric humidity exceeded 2 standard 
deviations above the climatological 14–17 June mean 
(Fig. 17.1c).  

Synoptic conditions were likewise extremely rare 
for mid-June. We categorize the occurrence of upper- 
and lower-level daily June atmospheric patterns in 
the National Centers for Environmental Prediction 
(NCEP) R1 reanalysis using self-organizing map 
(SOM) cluster analysis (Borah et al. 2013; Chattopad-
hyay et al. 2008; Hewitson and Crane 2002; Johnson 
2013; Kohonen 2001; see Supplemental Materials). 
SOM analyses reveal persistent upper-level blocking 
patterns from 10 to 17 June and lower-level trough-
ing patterns from 11 to 17 June (Supplementary Fig. 
S17.2). Additionally, the upper- and lower-level pat-
terns (Fig. 17.1g,h) that persisted during the core of 
the event (14–17 June) are each historically associated 
with heavy precipitation over northern India (Fig. 
17.1i,j). Although occurrence of the core-event upper-
level pattern is not rare for June (median frequency 
of occurrence), the 850-mb pattern is much less com-
mon (<6 percentile frequency of occurrence). Further, 
mid-June 2013 was the only instance that the core-
event upper- and lower-level patterns co-occurred in 
June during the 1951–2013 period. The atmospheric 



S60 SEPTEMBER 2014|

configuration associated with the unprecedented 
mid-June extreme precipitation, therefore, appears 
to also have been unprecedented. 

We note that this configuration is not necessar-
ily unprecedented later in the monsoon season. For 
example, the co-occurrence of upper-level blocking 
with tropical moisture advection is similar to the 
conditions identified during the July 2010 Pakistan 
f loods and during heavy precipitation events that 
occur during the core monsoon season (Hong et al. 
2011; Houze et al. 2011; Lau and Kim 2011; Ullah and 
Shouting 2013; Webster et al. 2011).

Quantifying the probability of a 2013-magnitude event. 
In quantifying the probability of a 2013-magnitude 
event, we restrict our focus to the June 2013 total pre-
cipitation. We select the monthly scale extreme rather 
than the daily scale extreme because both the extreme 
magnitude of this event relative to the observed distri-
bution of four-day June totals and the limited ability 
of climate models to accurately simulate the daily 
scale extremes make the problem intractable at the 
daily scale. Therefore, hereafter, “a 2013-magnitude 
event” refers to the total June rainfall, which in June 
2013 was the most extreme on record (Fig. 17.1b).

Given the rarity of the event in the observed record 
(Fig. 17.2a), we fit a Pareto (heavy-tailed) distribution 
to the 1951–2012 observations of spatially averaged 
(area-weighted average) rainfall over the selected 
domain (Fig. 17.2a; Supplementary Fig. S17.3a). From 
the Pareto distribution, we estimate the sample quan-
tile (Qo) and return period (Ro) of the June 2013 total 
precipitation in the present climate (see Supplemental 
Materials). We find that the 2013 event exceeds the 
99th percentile in the observed distribution (Qo = 
99.1th quantile), yielding a return period of 111 years 
(Fig. 17.2a). Because the Pareto is a heavy-tailed dis-
tribution, extreme events are less likely to be found 
anomalous, and, thus, the corresponding return 
period can be considered a lower bound.

Next, we assess the influence of anthropogenic 
forcings on the likelihood of extreme June precipita-
tion using the historical (20C) and preindustrial (PI) 
simulations from the CMIP5 climate model archive 
(Taylor et al. 2012). We use the Kolmogorov–Smirnov 
(K-S) goodness-of-fit test to identify the models that 
most closely simulate the observed distribution of 
the area-weighted average June total precipitation 
over the impacted region (Fig. 17.1a). (To control for 
the mean bias in the models, we first re-center each 
model’s distribution so that the model mean matches 
the observed mean.) Because the simulated change in 

likelihood of extremes can be heavily influenced by 
biases in the simulated distribution, we restrict our 
analyses to 11 models whose K-S value exceeds 0.2 
(Supplementary Fig. S17.3b), ensuring a comparatively 
good fit of the overall distribution, including in the 
tails. Among these 11 models that pass this goodness-
of-fit criterion, 4 show greater mean and variability of 
June precipitation in the 20C simulations (Fig. 17.2b). 
However, 7 of the 11 show increased exceedance of 
the PI 99th percentile value (Fig. 17.2c), suggesting 
increased probability of extremely high June precipi-
tation in the current climate. This result is consistent 
with studies that indicate an increase in extremes 
primarily from increased atmospheric-moisture 
availability (Allan and Soden 2008; O’Gorman and 
Schneider 2009). 

Next, we use Pareto distributions to estimate the 
return period of the June 2013 total precipitation 
in the 20C and PI simulations. To control for the 
variability-bias in the models, we first determine 
the magnitude of the 111-year event (Qo= 99.1th 
quantile) in the fitted 20C distribution (PrH), and 
then determine the quantile (QPI) corresponding to 
PrH in the fitted PI distribution (see Supplemental 
Materials; Supplementary Fig. S17.3c). Further, we 
quantify the uncertainty in these likelihood esti-
mates (Qo/QPI) using the bootstrap (Fig. 17.2d). We 
find that 5 of the 11 models show >50% likelihood 
that the extreme June total precipitation has higher 
probability in the 20C climate. In addition, of the 
three models that have high p-values from the K-S 
test (> 0.8) and similar sample sizes in the 20C and PI 
populations (Fig. 17.2d), two suggest >50% likelihood 
that the extreme June total precipitation has higher 
probability in the 20C climate, and the third model 
suggests ~50% likelihood. Further, the model with the 
largest 20C ensemble (Centre National de Recherches 
Meteorologiques Coupled Global Climate Model; 
CNRM-CM5) demonstrates a ~50% likelihood that 
the probability of the extreme June total precipitation 
has at least doubled in the 20C climate. CNRM-CM5 
also has the highest skill in simulating the summer 
monsoon precipitation and lower-level wind climatol-
ogy (Sperber et al. 2013). 

 
Conclusions. Our statistical analysis, combined with 
our diagnosis of the atmospheric environment, dem-
onstrates that the extreme June 2013 total precipita-
tion in northern India was at least a century-scale 
event. Precise quantification of the likelihood of the 
event in the current and preindustrial climates is 
limited by the relatively short observational record 
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and by the resolution and ensemble size of the small 
subset of models that credibly simulate the seasonal 
rainfall distribution over northern India. Indeed, an 
attempt to quantify the probability of the unprec-
edented four-day precipitation total would present 
even greater analytical challenges. However, despite 
these limitations, our analyses of the observed and 

simulated June precipitation provide evidence that 
anthropogenic forcing of the climate system has 
increased the likelihood of such an event, a result 
in agreement with previous studies of trends in 
rainfall extremes in India (Goswami et al. 2006; 
Krishnamurthy et al. 2009; Ghosh et al. 2012; Singh 
et al. 2014).

Fig. 17.2. Extreme precipitation statistics in the current and preindustrial climates. (a) Probability 
density function of the Pareto-fitted observed cumulative-June precipitation distribution (black line; 
1951–2012), and probability of occurrence of the June 2013 cumulative precipitation magnitude in this 
distribution (red). The return period of the June 2013 magnitude in the observed distribution is indicated 
on the plot. (b) Change in mean and standard deviation of precipitation between the CMIP5 historical 
(20C) and preindustrial (PI) simulations. Gray dots represent all available CMIP5 models and colored 
symbols represent A1 models that meet the Kolmogorov–Smirnov (K-S) goodness-of-fit test criteria 
(p value > 0.2). (c) Percent of years in the 20C simulations of A1 models that exceed the respective PI 
quantiles of the A1 models. The numbers on the plot indicate the fraction of A1 models that exceed the 
PI quantiles in the 20C simulations. (d) Box plot representing the distribution of ratios of the return 
period of a June 2013 magnitude event in the PI and 20C simulations, calculated using the bootstrap. 
The lines in the boxes represent the median of the distribution for each model. The bounds of the 
boxes represent the 25th and 75th percentiles. The whiskers extend to the edges of 1.5×interquartile 
range, and points outside of those bounds are shown individually. The number of years indicated for 
the 20C Yrs and PI Yrs columns are the total years available from all realizations within each scenario. 
The color bar corresponding to the box plot indicates p values from the Kolmogorov–Smirnov test.  



S17. SEVERE PRECIPITATION IN NORTHERN 
INDIA IN JUNE 2013: CAUSES, HISTORICAL 

CONTEXT, AND CHANGES IN PROBABILITY

DeepTi Singh, Daniel e. horTon, Michael TSiang, MaTz haugen, MoeTaSiM aShfaq, rui Mei,  
DeekSha raSTogi, naThaniel c. johnSon, alliSon charlanD, Bala rajaraTnaM, anD  

noah S. DiffenBaugh

Datasets. For the precipitation analysis, 
we use the 1° × 1° gridded daily dataset 
from the Indian Meteorological De-
partment (IMD; Rajeevan et al. 2006, 
2010). This dataset is developed from 
approximately 2140 rain gauge stations 
over India, and it has been extensively 
used in literature to study character-
istics of the Indian Monsoon (Dash 
et al. 2009; Ghosh et al. 2012; Singh 
2013). As shown in Fig. 1a of Rajeevan 
et al. (2006), all stations included in 
the development of this dataset have at 
least 90% data availability within the 
observational period.

Daily atmospheric variables—in-
cluding geopotential heights, atmo-
spheric winds, and specific humid-
ity—are obtained from the National 
Centers for Environmental Prediction/
National Center for Atmospheric Re-
search (NCEP/NCAR) reanalysis (R1) 
datasets at 2.5° × 2.5° spatial resolu-
tion (Kalnay et al. 1996). In order to 
match the period of record of the IMD 
precipitation dataset, we analyze the 
1951–2013 period in the reanalysis.

Self-organizing maps methodology. The 
self-organizing map (SOM) is a neural 
network-based cluster analysis, similar 
to k-means clustering, that partitions a 
high-dimensional dataset into a smaller 
number of representative clusters (Ko-
honen 2001). In contrast with conven-

 Fig. S17.1.  June 2013 monsoon dynamics. (a) June 2013 monsoon onset 
anomalies from 1951–2012 climatology at each grid-cell. The onset date 
at each grid-cell is defined as the 5-day mean precipitation exceeding 
the January mean precipitation of that year and 5 mm day-1. Negative 
anomalies over most of central and northwestern India suggest an 
early monsoon onset in June 2013. (b) June 2013 vertical easterly zonal 
wind shear. The easterly zonal wind shear is defined as the difference 
in winds between the upper (200-mb) and lower (850-mb) atmosphere 
averaged over the domain (0°–30°N, 50°–90°E). The vertical wind shear 
was ~2σ above the 1951–2012 climatological mean prior to the June 
2013 event. (c,d) Zonally averaged (52°–85°E) tropospheric tempera-
ture (200–500-mb) above the land at 30°N (c) and the ocean at the 
equator (d). The temperature over land (“northern temperature”) 
also exceeded the 1951–2012 climatological mean by 2σ.
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tional cluster analysis, these SOM clusters, each of 
which is associated with a component called a node 
or neuron, become topologically ordered on a lower-
dimensional (typically two-dimensional) lattice so 
that similar clusters are located close together in 
the lattice and dissimilar clusters are located farther 
apart. This topological ordering occurs through the 
use of a neighborhood function, which acts like a 
kernel density smoother among a neighborhood of 
neurons within this low-dimensional lattice. As a re-
sult, neighboring neurons within this lattice influence 
each other to produce smoothly varying clusters that 

represent the multidimensional distribution function 
of the data used to construct the SOM. 

In the present study, we perform two separate 
SOM analysis to categorize daily June 1951–2013 
upper-level (200 mb) and lower-level (850 mb) geopo-
tential height anomalies in the domain centered over 
northern India (0°–60°N, 40°–120°E). In each SOM 
analysis, the daily geopotential height anomaly field 
is treated as an M-dimensional vector, where M is the 
number of grid points. The user specifies the number 
of clusters, K, and the final clustering is determined 
through an iterative procedure that approximately 

minimizes the Euclidean distance 
between the daily geopotential height 
anomaly f ields in M-dimensional 
space and their best-matching SOM 
patterns. During this iterative pro-
cedure, the SOM patterns also “self-
organize” into a topologically ordered 
two-dimensional lattice or grid, as 
described above. Each daily height field 
is assigned to a best-matching SOM 
pattern on the basis of minimum Eu-
clidean distance. Additional details of 
the SOM methodology can be found in 
the appendix of Johnson et al. (2008). 
See also Hewitson and Crane (2002) 
and Liu et al. (2006) for additional 
discussion of SOM applications in cli-
mate science, and see Chattopadhyay 
et al. (2008) and Borah et al. (2013) for 
SOM applications to Indian monsoon 
intraseasonal variability. Reusch et 
al. (2005) and Liu et al. (2006) also 
compare SOM analysis with empirical 
orthogonal function analysis for the 
purpose of pattern extraction, dem-
onstrating several advantages of SOM 
analysis over the more conventional 
approach.

As mentioned above, the user must 
specify the choice of K prior to the 
iterative procedure that determines 
the SOM clusters. Although there are 
quite a few approaches for determin-
ing an appropriate value of K, there 
is no universally accepted method for 
determining the optimal K. In this 
study, we make the subjective choice of 
K = 35 (i.e., a SOM organized in a two-
dimensional lattice with five rows and 
seven columns), which is a high enough 
value to resolve regional pattern detail 

 Fig. S17.2. Temporal progression of upper- and lower-level synoptic 
patterns. We use self-organizing map (SOM) cluster analysis to iden-
tify upper- and lower-level atmospheric patterns in June 2013, track 
their temporal progression, and assess their historical occurrence and 
co-occurrence (see text). (a) Time-series of the upper-level (blue) and 
lower-level (green) self-organizing map (SOM) patterns for each day 
of June 2013. Patterns relevant to the flooding event are highlighted 
in gray windows in the time-series panel, and their spatial patterns 
are displayed in panels (b) and (c). SOM pattern numbers display in 
the lower right of the maps. Daily precipitation accumulation over 
the flood region (Fig. 1a in the main report, white box) is indicated in 
the secondary y-axis of (a), with June 2013 values shown in red X’s and 
each year in 1951–2012 shown in gray ovals. The relative frequency 
of occurrence of each SOM pattern to all historic June days is indi-
cated in the lower left of each SOM map (b,c). From 10 June to 17 
June, blocking patterns persisted in the upper atmosphere (200-mb, 
patterns 25 & 33), while low-pressure troughing strengthened in the 
lower atmosphere over the flood region (850-mb, patterns 10 & 17). 
On 18 June, the system lost upper-level support and weakened. 14–17 
June 2013 was the first time upper-level pattern 33 co-occurred with 
lower-level pattern 10 during the month of June within the 1951–2013 
historical record.
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but small enough to maintain interpretability. We 
test that our results are robust with different choices 
for K and that all 35 SOM patterns are statistically 
distinguishable. For the test of statistical distinguish-
ability, we follow the approach of Johnson (2013). 
This test is administered by evaluating whether or 
not all K(K–1)/2 SOM pattern pairs are statistically 
distinguishable on the basis of a field significance test, 
which in this case is based on the determination of 
the “false discovery rate” (Benjamini and Hochberg 
1995; Wilks 2006). Additional details of the test are 
given in Johnson (2013).

In the present application, we add an additional 
step to account for the strong autocorrelation evident 
in daily data. Because a SOM pattern typically persists 
for several consecutive days, the number of daily oc-
currences of each SOM pattern would substantially 
overestimate the number of temporal degrees of free-
dom in the local t-tests that determine whether the 
SOM pattern composite anomalies are significantly 
different from each other. To correct for this potential 
source of bias, we perform the local t tests for subsets 
of the daily geopotential height fields assigned to each 
SOM pattern. Because the time scale of atmospheric 
teleconnection patterns is on the order of one to two 
weeks (e.g., Feldstein 2000), we set the condition that 
each geopotential height field assigned to the SOM 
pattern within a subset must be separated by all other 
geopotential height fields within the subset by at least 
15 days. If this separation criterion is not met, then 
we only keep the daily field with the highest pattern 
amplitude, where the amplitude is defined as the 
projection of the daily geopotential height field onto 
the assigned SOM pattern.

The results of this distinguishability test reveal 
that all 35 SOM patterns in the 200-mb and 850-mb 
geopotential height SOMs are statistically distin-
guishable from each other at the 5% level. Further-
more, all SOM pattern pairs but one (SOM patterns 
2 and 8 in the 850-mb geopotential height SOM) 
are statistically distinguishable from each other at 
the 1% level. These results suggest that the choice of  
K = 35 is reasonable in that this value of K is not too 
high such that the SOM patterns become statistically 
indistinguishable from each other. Furthermore, we 
also have performed the same analysis for K = 20 and 
found that the main features of the 20-pattern SOMs 
are quite similar to the main features of the 35-pat-
tern SOMs. Therefore, these evaluations support the 
robustness of the SOM analysis in this study. 

From these 35 distinct nodes, we identify the up-
per- and lower-level atmospheric patterns in June 
2013 to track their temporal progression, and we 

assess their historical occurrence and co-occurrence 
(Fig. 17.1g,h in the main report; Fig. S17.2). Addition-
ally, we determine typical precipitation patterns as-
sociated with each geopotential height SOM pattern 
(e.g., Fig. 17.1i,j in the main report and Fig. S17.2) by 
creating composites of precipitation from each June 
day in 1951–2013 on which the atmospheric patterns 
best matched the corresponding node. This was per-
formed on the basis of assignments of each day to a 
particular SOM pattern. 

Determining a parametric fit for the observed distribu-
tion. The event being analyzed lies substantially out-
side the range of the observed distribution. Therefore, 
to quantify the probability of occurrence of such 
an event, we test different parametric distributions 
(gamma, weibull, lognormal, and pareto) to find a 
suitable fit for the observations (Fig. S17.3a). We use 
the maximum log-likelihood estimator to precisely 
determine the parameters of these potential distribu-
tions. Through evaluating the RMS errors (see Table 
S17.1) between the observed and fitted distributions, 
we conclude that the Pareto-III distribution most 
closely represents the observed distribution function. 

Probability quantif ication. We use spatially averaged 
cumulative June precipitation from 1951 to 2013 over 
the flood-affected region (Fig. 17.1a in the main re-
port) to generate an observed distribution to examine 
the probability of the June 2013 event. After fitting 
the Pareto-III distribution to the observed cumula-
tive June precipitation, we determine the percentile 
or probability (p) of a specific event magnitude (Pr), 
and thereby quantify the return period (T = 1/p) of 
the event in the context of the observed climate. We 
find that the total June 2013 precipitation magnitude 
exceeds the 99.1th percentile (Fig. 17.1a in the main 
report) and has a return period of 111 years (Fig. 17.2a 
in the main report).

tAble S17.1. Parametric fits of the ob-
served June precipitation distribution.

Parametric Model RMS Error

Gamma 0.029

Weibull 0.049

Lognormal 0.021

Pareto 0.018

Root mean square error between fitted and 
empirical cumulative distribution functions of 
the observed June precipitation.
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We use the Coupled Model Intercom-
parison Project phase 5 (CMIP5) histori-
cal (20C) and preindustrial (PI) simula-
tions (Table S17.2, S17.3) to quantify the 
inf luence of observed anthropogenic 
forcing on the likelihood of the June 
2013 total cumulative precipitation (Fig. 
17.2b–d in the main report). The method 
is illustrated in Fig. S17.3c. After shifting 
the 20C and PI distributions by the dif-
ference between the observed and 20C 
means, we use the Kolmogorov–Smirnov 
(K-S) goodness of fit test to measure 

 Fig. S17.3. Statistical frame-
work for probability quantifi-
cation. (a) Results from fitting 
the observed cumulative June 
precipitation (1951–2012) with 
4 parametric models. The Pa-
reto-III model shows the low-
est root mean square error be-
tween the empirical and model 
cumulative distribution func-
tions (shown in Table S17.1). (b) 
p-values of the Kolmogorov-
Smirnov (“K-S”) goodness of 
fit test measuring the closeness 
of CMIP5-simulated historical 
(20C) distributions to the ob-
served distribution. (See Table 
S17.2 for model names). Higher 
p-values indicate models that 
more closely simulate the ob-
served distribution, including 
the tails. (c) Theoretical meth-
odology for quantifying the 
probability of a specific event 
in the 20C and preindustrial PI 
climates. This involves deter-
mining the magnitude of the 
event (Prh) in the 20C distribu-
tion corresponding to the per-
centile of the observed event  
(Qo = Qh). The ratio (PI/20C) 
of the return periods is calcu-
lated by estimating the per-
centile (or probability) of this 
simulated event (Prh = PrI) in 
the pre-industrial (TPI) and 
historical (T20C) distributions.

the closeness of CMIP5 simulated 
historical (20C) distributions to the 
observed distribution. [Refer to Sper-
ber et al. (2013) for an evaluation of 
the skill of these models to simulate 
other characteristics of Indian mon-
soon rainfall, circulation indices, and 
their teleconnections.] Because the 
simulated change in likelihood of 
extremes can be heavily influenced by 
biases in the simulated distribution, 
we restrict our analysis to 11 models 
whose K-S value exceeds 0.2 (A1; see 
Fig. S17.3b), ensuring a comparatively 
good fit of the overall distribution, 
including in the tails. We then fit the 
select A1 CMIP5 models with Pareto-
III distributions. 

We determine the magnitude of 
the 99.1th percentile event in the 
20C distribution as representative 
of the simulated event magnitude 
(follow the vertical red line in Fig. 
S17.3c). By definition, the event has 
a return period of 111 years in the 
20C distribution. Next, we find the 
corresponding percentile—and hence 
return period—of this 20C magnitude 
event in the preindustrial simulations 
(follow the horizontal blue line in Fig. 
S17.3c). 

By comparing the likelihood of 
the event in the preindustrial climate 
to the historical climate, the ratio of 
the return periods (TPI/T20C) provides 
an estimate of the influence of 20C 
forcings on the probability of the June 
2013 heavy precipitation.

tAble S17.2. Number of years in the historical (20C) and 
pre-industrial (PI) simulations of select models, and root 
mean square error between fitted and empirical cumu-
lative distribution functions of model June precipitation.

CMIP5 Model “20C” years “PI” years RMS Error

CNRM-CM5 550 350 0.017

ACCESS1-3 165 500 0.015

ACCESS1-0 110 500 0.025

HadGEM2-CC 147 240 0.019

HadGEM2-ES 275 577 0.016

IPSL-CM5B-LR 55 300 0.02
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tAble S17.3. Names of the 11 CMIP5 models that meet the K-S test criterion.

Model Full Model name

CNRM-CM5 C Centre National de Recherches Meteorologiques - Coupled Global Climate Model version 5

HadGEM2-ES Hadley Global Environment Model 2 - Earth System

ACCESS1-0 Australian Community Climate and Earth-System Simulator (ACCESS) version 1.0

ACCESS1-3 Australian Community Climate and Earth-System Simulator (ACCESS) version 1.3

BCC-CSM1-1 B Beijing Climate Center - Climate System Model version 1.1

MIROC4h Model for Interdisciplinary Research on Climate, version 4 High Resolution

MPI-ESM-MR Max Planck Institute - Earth System Model - Meduim Resoultion

HadGEM2-CC Hadley Global Environment Model 2 - Carbon Cycle

HadGEM2-AO Hadley Global Environment Model 2 - Atmosphere Only

MPI-ESM-P Max Planck Institute - Earth System Model - Low Resoultion and Paleo mode

IPSL-CM5B-LR Institut Pierrre-Simon Laplace - Climate Model version 5B - Low Resolution

 However, the limited sample of precipitation 
creates uncertainty in the true fit of the Pareto-III 
distribution to the observed and CMIP5 simulated 
precipitation data, thereby introducing uncertainty 
in the PI/20C return period ratio. We therefore use a 
bootstrapping approach to quantify this uncertainty 
and provide confidence estimates for this ratio. We 
bootstrap the observed, 20C, and PI precipitation data 

to generate many distributions to capture the uncer-
tainty around the true parameters of the Pareto-III 
fits and thus the uncertainty in the return periods. By 
applying the probability quantification methodology 
described above to all these bootstrapped distribu-
tions, we generate a distribution of the PI/20C return 
period ratios, which are represented in box plots in 
Fig. 17.2d in the main report. 
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