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Fig. 1.1. Location and type of events analyzed in this paper.
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The event: 2013/14 drought in California. Nearly the 
entire state of California experienced extremely 
dry conditions during 2013 (Fig. 2.1a). Statewide, 
12-month accumulated precipitation was less than 
34% of average (Fig. 2.1b), leading to a wide range of 
impacts. In early 2014, state and federal water agencies 
announced that agricultural water users in the Cen-
tral Valley would receive no irrigation water during 
2014 (DWR 2014; USBR 2014), and that a number of 
smaller communities throughout California could run 
out of water entirely within a 90-day window (USDA 

2014a). Low rainfall, unusually warm temperatures, 
and stable atmospheric conditions affected the health 
of fisheries and other ecosystems (CDFW 2014), cre-
ated highly unusual mid-winter wildfire risk (CAL 
FIRE 2014), and caused exceptionally poor air quality 
(BAAQMD 2014). Such impacts ultimately resulted in 
the declaration of a state-level “drought emergency” 
and the federal designation of all 58 California coun-
ties as “natural disaster areas” (USDA 2014b).  

The California drought occurred in tandem with 
a highly persistent region of positive geopotential 

California’s driest 12-month period on record occurred during 2013/14, and although global warming has very likely 
increased the probability of certain large-scale atmospheric conditions, implications for extremely low precipitation 

in California remain uncertain.
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height (GPH) anomalies over the northeastern Pacific 
Ocean (Fig. 2.1e,h), nicknamed the “Ridiculously 
Resilient Ridge” in the public discourse. Anomalous 
geostrophic f low induced by these highly unusual 
GPH gradients was characterized by weakened 
westerly zonal winds over the Pacific, strengthened 
zonal flow over Alaska (Fig. 2.1d), and a couplet of 
poleward-equatorward meridional wind anomalies 
centered in the northeastern Pacific around 135°W 
(Fig. 2.1g). This amplified atmospheric configuration 
displaced the jet stream well to the north, leading 

to greatly reduced storm activity and 
record-low precipitation in California 
(Fig. 2.1a,b). 

California typically experiences 
strong seasonality of precipitation, 
with the vast majority coinciding with 
the passage of cool-season extratropi-
cal cyclones during October–May (e.g., 
Cayan and Roads 1984). The meteoro-
logical conditions that occurred during 
what would normally be California’s 
“wet season”—namely, the presence 
of a quasi-stationary midtropospheric 
ridge and a northward shift/suppres-
sion of the storm track—strongly 
resembled the conditions during pre-
vious California droughts (Namias 
1978a,b; Trenberth et al. 1988) and 
during extremely dry winter months 
(Mitchell and Blier 1997). The per-
sistence of these meteorological con-
ditions over the second half of the 
2012/13 wet season and the first half 
of the 2013/14 wet season resulted in 
an extremely dry 12-month period 
(Fig. 2.1c).

The 2013 event in historical context. 
The 12-month precipitation and GPH 
anomalies are both unprecedented in 
the observational record (Fig. 2.1a,e). 
We find that a vast geographic re-
gion centered in the Gulf of Alaska 
experienced 500-mb GPH anomalies 
that exceeded all previous values (Fig. 
2.1e) in the 66-year NCEP1 reanalysis 
(Kalnay et al. 1996). Standard devia-
tion of the daily 500-mb GPH field was 
also extremely low over much of the 
northeastern Pacific (Fig. 2.1h), an in-
dication of the profound suppression of 

the storm track and of extratropical cyclonic activity 
induced by persistent ridging.

Likewise, most of California received less pre-
cipitation in 2013 than during any previous calendar 
year in the 119-year observational record (Fig. 2.1a). 
Observed precipitation over the 12-month period 
ending on 31 January 2014 was the lowest for any 
consecutive 12-month period since at least 1895 (Fig. 
2.1c). Thus, the one-year precipitation deficit as-
sociated with the 2013/14 event was larger than any 
previous one-year deficit observed during California’s 

Fig. 2.1. Structure and context of the 2013/14 event. (a) Number of 
Jan–Dec periods during 1895–2012 in which precipitation was less 
than the Jan–Dec 2013 value, using the PRISM dataset. (b) Cumula-
tive Jan–Dec precipitation in California for each year in 1895–2013, 
using the PRISM dataset. (The second-driest calendar year on record, 
1976, is shown for reference.) (c) 12-month (one-sided) moving aver-
age precipitation in California from 1895 to 2014, using the NCDC 
(NCLIMDIV 2014) and PRISM (PRISM 2014) datasets. 12-month 
minima experienced during major historical droughts are highlighted. 
(d) Zonal and (g) meridional wind anomalies during Jan–Dec 2013. 
Arrows depict the direction of the primary anomaly vectors; the gray 
arrow in (d) denotes the region where easterly anomalies oppose 
mean westerly flow. (e) Number of Jan–Dec periods during 1948–2012 
in which 500-mb GPH were higher than the Jan–Dec 2013 value. (f) 
Feb–May and (i) Oct–Jan normalized California precipitation (blue) 
and sign-reversed northeastern Pacific GPH (red) during 1948–2013 
in NCEP reanalysis. (h) As in (e), but for standard deviation of daily 
500-mb GPH.
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historical droughts, including the notable events of 
1976/77 and 1987–92.

One of the most remarkable aspects of the 2013/14 
event was the spatial and temporal coherence of 
strong midtropospheric ridging and associated 
wind anomalies over multiple seasons. The spatial 
structure of observationally unprecedented GPH 
anomalies during both February–May 2013 and 
October–January 2013/14 was very similar to that 
of the 12-month mean (Supplementary Fig. S2.1), as 
was the structure of the ridging-induced anomalous 
f low. The coherence of this anomalous large-scale 
atmospheric pattern preceding and following the 
canonical June–September dry season was especially 
unusual. In particular, although high-amplitude 
meridional f low and positive GPH anomalies over 
the far northeastern Pacific are often associated 
with precipitation deficits in California (Carrera 
et al. 2004; Namias 1978a; Chen and Cayan 1994), 
the temporal resilience and spatial scale of the GPH 
anomalies were greater in 2013/14 than during pre-
vious droughts in California’s recent past (Fig. 2.1e). 

Quantifying the probability of a 2013-magnitude event. 
We define a “2013-magnitude event” as the mean 
January–December 2013 500-mb GPH over the core 
area of unprecedented annual GPH (35°–60°N and 
210°–240°E; Fig. 2.1e). We find a strong negative 
relationship between northeastern Pacific GPH and 
California precipitation [for the 1979–2012 period, 
traditional correlation for February–May (Octo-
ber–January) = –0.72 (–0.72); Spearman’s correla-
tion for February–May (October–January) = –0.66 
(–0.73); Fig. 2.1f,i. We use GPH to characterize the 
event based on the rarity of the GPH anomalies and 
the observed strength of the relationship between 
GPH and precipitation (Mitchell and Blier 1997; 
Chen and Cayan 1994). Because the 2013 12-month 
GPH fell far in the upper tail of the observational 
distribution (Fig. 2.2a), we calculate the likelihood 
of the 2013 event by fitting a Pareto III-type para-
metric distribution to the 1979–2012 reanalysis [Fig. 
2.2a; Supplementary Materials (SM)]. We select the 
Pareto-III distribution for parametric fitting because 
it is characterized by a one-sided heavy tail, which 
allows for more stable estimates of return periods 
for extreme events occurring far in the upper tail 
of observed or simulated distributions (such as a 
2013-magnitude event, see SM). We estimate that 
the return period for the 2013 12-month GPH value 
“likely” exceeds 285 years (>66% confidence; Mas-
trandrea et al. 2011) and “very likely” exceeds 126 

years (>95% confidence), with a median estimate of 
421 years (Fig. 2.2b). 

We use the CMIP5 global climate models (Taylor 
et al. 2012) to compare the probability of persistently 
high GPH in the 20th century (20C) and preindus-
trial control (P.I.) climates (see SM). The relationship 
between northeastern Pacific GPH and California 
precipitation is well represented in the CMIP5 20C 
simulations (Langford et al. 2014). We select the 
12 models for which 20C and P.I. GPH data are 
available, and for which the Kolmogorov-Smirnov 
goodness-of-fit test exceeds 0.2 between the climate 
model and reanalysis distributions (Supplementary 
Fig. S2.2). We find that the mean change in GPH 
between the P.I. and 20C simulations is positive for 
11 of these 12 models (median change = +7.96 m; Fig. 
2.2d). We, thus, find large increases in the frequency 
of occurrence of events exceeding the highest P.I. 
percentiles in the 20C simulations (Fig. 2.2e). For 
instance, the median change in occurrence of GPH 
values exceeding the 99th P.I. percentile is >670%. 
While the occurrence of events exceeding the P.I. 
90–99th percentiles categorically increases in the 20C 
simulations (which include both natural and anthro-
pogenic forcings), we find no such increase in those 
CMIP5 simulations which include only natural forcing 
(Fig. 2.2f; see SM). Thus, we find that anthropogenic 
forcing—rather than natural external forcing—domi-
nates the simulated response in extreme GPH.

We also use the Pareto-III distribution to calculate 
the return period of the 2013-magnitude extreme 
GPH event in the CMIP5 simulations. Here we select 
the three CMIP5 models for which the Kolmogorov-
Smirnov goodness-of-fit test exceeds 0.8 (i.e., the “B3” 
models; Supplementary Fig. S2.2). For these models, 
we again fit bootstrapped Pareto-III distributions to 
the simulated 20C (1979–2005) and P.I. distributions 
to estimate return periods for a 2013-like extreme 
GPH value in our index region (see SM). The distribu-
tion of ratios between the bootstrapped return periods 
calculated for the 20C and P.I. simulations suggests 
that it is “likely” (“very likely”) that the probability of 
extremely high GPH is at least a factor of 4.02 (2.86) 
as great in the current climate as in the preindustrial 
control climate (Fig. 2.2c). Although the trend in GPH 
during the 20C simulations strongly influences the 
increase in probability (Supplementary Fig. S2.3), we 
reiterate that the increased occurrence of extreme 
GPH does not occur in the absence of human forcing 
(Fig. 2.2f).

Because the spatial structure of the GPH field—
rather than the regional mean value—is the ultimate 
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causal factor in rearranging the geostrophic flow field 
and shifting the midlatitude storm track away from 
California, we also examine the configuration of 
the large-scale atmospheric patterns associated with 
extreme GPH in the B3 models. For each of the B3 
models, we composite the 12-month anomaly fields 
of 500-mb GPH, 250-mb winds, and total precipita-
tion from each 20C year in which the GPH in our 
index region exceeds the respective P.I. 99th percen-
tile. A zonally asymmetric pattern of positive GPH 
anomalies is apparent in all three model composites, 
with a distinct maximum located over the Gulf of 
Alaska region (Fig. 2.2g,k,o). This perturbation of 
the GPH field is associated with well-defined anti-
cyclonic circulation anomalies, including weakened 
westerly flow aloft near and west of California (Fig. 
2.2h,l,p) and enhanced equatorward flow aloft near 
the western coast of North America (Fig. 2.2i,m,q). 

This composite spatial pattern strongly resembles 
the large-scale atmospheric structure that occurred 
during 2013 (Fig. 2.1d,e,g,h; Supplementary Fig. S2.2), 
and it is associated with large negative precipitation 
anomalies in the vicinity of California (Fig. 2.2j,n,r). 
These composite results thereby confirm that the 
extreme GPH events identified in our index region 
are associated with anomalous atmospheric circula-
tion over the northeast Pacific and dry conditions in 
California. 

We note two caveats. First, neither our probability 
quantification nor our compositing methodology 
quantifies the amplitude of extreme ridging events. 
Because we do not explicitly consider geopotential 
heights outside the North Pacific, it is likely that our 
inclusion of all years that exceed the 99th percentile 
P.I. GPH leads to inclusion of some events that have 
lower amplitude than that associated with either the 

Fig. 2.2. Quantifying the probability of a 2013-magnitude 
event. (a) Histogram (gray bins) and fitted Pareto-III distribu-
tion for NCEP reanalysis 500-mb GPH in the post-satellite 
period (1979–2013). The fitted distribution—shown for illus-
trative purposes—is estimated using the actual reanalysis 
distribution. (b) Distribution of bootstrapped return periods 

for a 2013-magnitude Jan–Dec GPH event in the 1979–2012 reanalysis data. (c) Cumulative distribution of 
bootstrapped return period ratios for the preindustrial control (P.I.) and historical 20th century (20C) simula-
tions in the B3 models, calculated as (P.I./20C). (d) Absolute change in mean and relative change in standard 
deviation of 500-mb GPH in the historical 20C and natural forcing (“Natural”) CMIP5 simulations relative to 
P.I. B3 models are highlighted using green colors. (e) Frequency of exceedance of P.I. 0.90–0.99 500-mb GPH 
quantiles in the 20C simulations. (f) Frequency of exceedance of P.I. 0.90–0.99 500-mb GPH quantiles in the 
Natural simulations. (g–r) The composite 12-month anomaly fields, calculated for each of the B3 models, of 
500-mb GPH (g,k,o), 250-mb zonal winds (h,l,p), 250-mb meridional winds (i,m,q), and total precipitation 
(j,n,r) from the 20C years in which the GPH in the North Pacific index region exceeds the respective P.I. 99th 
percentile.
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99th percentile P.I. GPH or the 2013 event. Thus, our 
present methodology cannot reject the possibil-
ity that the frequency of occurrence of years with 
anomalous GPH gradients—and the risk of extreme 
drought associated with a perturbed North Pacific 
storm track—has not changed between the prein-
dustrial period and the present. [However, we note 
that Wang et al. (2014) do find evidence of increased 
high-amplitude ridging in this region in response to 
anthropogenic forcing.] Second, Neelin et al. (2013) 
report both an increase in long-term mean Decem-
ber–February precipitation over California and 
strengthened December–February mean westerly 
flow over the far eastern Pacific at the end of the 21st 
century under strongly increased greenhouse forcing 
(RCP8.5). These changes are opposite in sign to those 
associated with extreme annual GPH events in the 
20C simulations relative to the P.I. control (Fig. 2.2).

Conclusions. The 2013/14 California drought was an 
exceptional climate event. A highly persistent large-
scale meteorological pattern over the northeastern 
Pacific led to observationally unprecedented geo-
potential height and precipitation anomalies over 
a broad region. The very strong ridging and highly 
amplified meridional f low near the West Coast of 
North America in 2013/14 was structurally similar 
to—but spatially and temporally more extensive 
than—atmospheric configurations that have been 
previously linked to extreme dryness in Califor-

nia (Mitchell and Blier 1997; Namias 1978a,b). We 
find that extreme geopotential height values in this 
region, which are a defining metric of this type of 
atmospheric configuration, occur much more fre-
quently in the present climate than in the absence 
of human emissions (Fig. 2.2).

The human and environmental impacts of the 
2013/14 California drought were amplified by the 
timing of the event. The event began suddenly in 
January 2013, abruptly truncating what had initially 
appeared to be a wet rainy season following very 
heavy precipitation during November–December 
2012 (DWR 2013). By persisting through January 
2014, the event also effectively delayed the start of 
the subsequent rainy season by at least four months. 
The rapid onset and persistent high intensity of 
drought conditions presented unique challenges 
for decision makers tasked with making choices 
about the allocation of water to urban, agricultural, 
and environmental interests (USDA 2014a; DWR 
2014). Together, the complexity and severity of the 
observed drought impacts, coupled with our finding 
that global warming has increased the probability of 
extreme North Pacific geopotential heights similar 
to those associated with the 2013/14 drought, suggest 
that understanding the link between climate change 
and persistent North Pacific ridging events will be 
crucial in characterizing the future risk of severe 
drought in California.

 

3. CAUSES OF THE EXTREME DRY CONDITIONS OVER 
CALIFORNIA DURING EARLY 2013

hailan Wang and siegFried sChuBert

Introduction. The state of California experienced 
extreme dry conditions during early 2013. In par-
ticular, January and February received 28% and 
15%, respectively, of their normal monthly rainfall. 
When January and February are combined, January/
February 2013 is ranked as the driest of the period 
1895–2014. Such large precipitation deficits exerted 
enormous stress on water resources in an already 

high water-demand region. Thus, it is of practical 
importance to investigate the causes of this extreme 
climate event so as to assess its predictability.

Climatologically, the winter precipitation over 
California comes from North Pacific storms that 
travel eastward under the guidance of the strong 
North Pacific jet stream. The oceanic storms 
transport abundant water vapor inland, with heavy 

The 2013 SST anomalies produced a predilection for California drought, whereas the long-term warming 
trend appears to make no appreciable contribution because of the counteraction between its dynamical and 

thermodynamic effects.
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